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An analytic solution is obtained for the head-on collision of strong shock waves 
with supersonically moving, axisymmetric, slender bodies. A new method of the 
solution is developed using integral transforms. Pressure distributions on the 
surface of a cone illustrate the effects of shock strength and body speed. The 
results are compared with those of Blankenship (1965), which were obtained by 
numerical methods. 

It is also shown that the same analysis can, with certain modifications, be 
adapted for treating the shock-shock interaction on thin two-dimensional aero- 
foils of arbitrary shape at  small incidence. 

1. Introduction 
Smyrl (1963) studied the impact of a plane shock wave of arbitrary strength 

on a thin two-dimensional wedge, moving at  supersonic speed, by the conical- 
flow technique of Lighthill (1949). The aerofoil has a weak attached shock and a 
collision between two shocks is involved. This has been termed a shock-shock 
interaction. Blankenship (1965) uses an approach similar to Smyrl’s in order to 
treat the shock-shock interaction of strong blasts on a slender supersonic cone, 
but he solved the boundary-value problem by numerical methods. 

The purpose of this paper is to obtain an analytic solution in closed form for the 
head-on collision of a plane shock of arbitrary strength on supersonically moving, 
axisymmetric, slender bodies. The formulation of the problem is essentially the 
same as that of Ting & Ludloff (1952) and Ludloff & Friedman (1952) for the 
diffraction of blasts by stationary bodies. A new procedure is developed for the 
solution using integral transforms, which is simple as well as straightforward. 
The same method, with certain modifications, is applied to the problem of shock- 
shock interaction on two-dimensional, supersonic, thin aerofoils of arbitrary 
shape. More general results are obtained than those of Smyrl(1963), in the sense 
that no need exists to represent the aerofoil as a superposition of wedges, or 
cone fields. 

The physical picture of the flow field which results after the body penetrates 
the shock has been discussed by Smyrl(1963), Blankenship (1965) and Blanken- 
ship & Merritt (1966). We shall summarize the essential features. We consider a 
plane shock of arbitrary strength (or a blast) moving freely at supersonic speed 
V into a gas at  rest imparting a uniform velocity U to the fluid behind it and 
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striking an axisymmetric slender body of infinite length moving in the opposite 
direction with supersonic speed W .  If the origin for time t is so chosen that at  
t = 0 the shock front coincides with the nose of the body, there are three flow 
regions (0), (1)  and (2) for t < 0 (see figure 1) .  In  region (0) the gas is at rest, 
region (1) is that of uniform flow behind the plane shock and region ( 2 )  is a 
spatially non-uniform region. The regions ( 0 )  and (2) are separated by a weak 
shock or Mach-wave emanating from the apex of the body. 

U 
__c. 

/ /  
/ 

FIGURE 1. Flow pattern for t = 0. 

For t > 0 the body penetrates the blast; the axisymmetric flow pattern de- 
veloped is illustrated in figure 2. We choose a co-ordinate system (x, r )  with 
origin 0 which is fixed relative to the undisturbed flow behind the shock. The 
presence of the body in region (1) causes a small disturbance; a spherical wavelet 
BCDE is spread with the speed of sound a, with centre at  0,  radius alt ,  together 
with an attached Mach-wave AC (due to the supersonic flow W + U > u1 over 
the body) tangent to it and the shock front. Due to interaction with the Mach- 
wave, the plane blast is deflected at  point I along IB. The pressure in the vicinity 
of the body surface behind the shock influences the speed and the curvature of 
the shock front which in turn changes the pressure on the body. The diffracted 
shock is considered to be slightly deflected from the undiffracted position and 
meets the body surface normally to ensure that flow across the shock will remain 
parallel to the surface. The Mach-wave at I is also deflected and takes the position 
I D  tangent to the reflected wave BCDE. 

It may be pointed out here that the procedure used in this paper does not 
depend much on this picture, since the problem is posed generally in terms of 
initial and boundary values, and the solution is obtained for the entire field 
behind the shock. The foregoing flow pattern, however, can be seen to emerge 
from the solution. 
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The flow is considered to be inviscid and adiabatic. With regard to the flow 
pattern (figure 2), the region (2) is truncated but otherwise not affected by the 
traversing shock. The disturbance field (assumed weak) in this region is deduced 
on the assumption that the changes in the state of the gas are not only adiabatic 
but isentropic too. In  the disturbed region behind the shock this supposition is 
untenable, since the air enters this region across a curved shock and we expect 
rotational flow. The downstream perturbations will be weak compared with the 
undisturbed flow of region (1). Thus a linear treatment of the flow field behind the 
shock based on region (1) is permissible. 

A 

FIGURE 2. Flow pattern for t > 0. 

The physical quantities defining the problem are M = V/a,  the Mach number 
of the shock, M’ = W/a ,  the Mach number of the body and r = f (x) the function 
defining the surface of the body, where x denotes the axial co-ordinate with 
origin at  the nose of the body. 

Undisturbed shock propagation 

If R,, P,, a, and R,, PI, a, be the density, pressure and speed of sound of the 
undisturbed flow ahead of and behind the shock, the conservation of mass, 
momentum and energy together with the equation of state applied across the 
shock give 
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2. Disturbance field behind the shock 
The equations governing the unsteady rotational flow behind the shock are 

continuity aR/at + V . (RV) = 0,  (2.1) 

momentum aV/at+(V.V)V = - ( l /R )VP,  (2.2) 

energy c,R{aO/at+(V.V)O) = -P(V.V) ,  (2.3) 

state P = JRO. (2.4) 

Equations (2.1), (2.3) and (2.4) can be combined to yield the adiabatic relation 

(2.5) (a/at + V .  V )  (PR-7) = 0, 

where R, P, 0, V denote the total values for density, pressure, temperature and 
velocity vector of the disturbed flow behind the shock, J is the gas constant and 
y = c&, is the ratio of the specific heats. 

Noting that the velocity of the undisturbed flow in region (1) is zero for the 
chosen co-ordinate system and assuming that behind the shock R, P differ only 
by small quantities from the undisturbed flow values R,, P,, the equations for the 
disturbance field behind the shock for axisymmetric flow (linearizing (2. l ) ,  (2.2) 
and (2.5)) will be given by 

12.6) 1 
ap,/at+R,au,/a~+ R,(aq,/ar+q,/r) = 0, 

aPllat = (?/Pl/R,) aPlla4 

&,/at = - ( l /R l )  ap,/ax, aql/at = - ( l /Rl)  ap,/ar, 

where p,, p 1  and (ul, 4,) denote the perturbation density, pressure and the axial 
and radial disturbance velocities behind the shock. These parameters can be 
expressed in non-dimensional form as pl/Rl = p, p,/yP, = p ,  ul/al  = u, ql/al = q 
and replacing the time variable t by a reduced space variable r = a,t, the set of 
equations (2.6) becomes 

aplar = ap/ar. 
These can be combined t o  yield 

which is a wave 
behind the shock. 

(2.10) 

equation for p ,  the non-dimensional perturbation pressure 
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3. The initial and boundary conditions 
The initial conditions are 

p ( x ,  r ,  7) = ap(x, r ,  T ) / a 7  = 0, for T G 0. (3.1) 

On the disturbed shock front 

The disturbed shock may be regarded as behaving in a quasi-steady manner, 
i.e. in a co-ordinate system fixed in the undisturbed shock itself, the downstream 
perturbation parameters p,, p,, u,, q, are related to the upstream perturbation 
parameters p2, p2,  u2, q2 at the shock through the usual shock relations. To arrive 
at  the specific results, a local element of the disturbed shock front is isolated as 

FIGURE 3. Local conditions at the perturbed shock. 

shown in figure 3. The unsteady displacement of the shock from its undisturbed 
position is denoted by $(r,  t )  and is assumed to be small. The shock velocity is 
directed normal to the shock front and has components in the x and r directions 
which are V +a$lat and - Va$/ar with respect t o  the upstream flow. These 
quantities are substituted into the Rankine-Hugoniot relations which are then 
linearized. The result is a set of simultaneous equations for p,, p,, u,, q1 in terms 
of p2, p,, u2, q2 and derivatives of $. The procedure has been carried out by 
Moore (1953) and the following relations can thus be found 
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The perturbation parameters behind the shock may be expressed in non-di- 
mensional form as before. Ahead of the shock we write p2/yPo = p ,  u2/V = U, 
q2/V = 4. The relations (3.2) may then be put in the form 

P = 41z+h12(P+nll$7, (3.3a) 

P = ~ z l ~ + ~ z , p + n , l ~ , ,  (3.3b) 

(3.3c) 

( 3 . 3 4  

= h31u + h3213 f n31 $ 7 9  

4 = A414 + m41 $ r ,  
where 

' 1 1  = - c 1 7  A12 = rc29 rill = C1(a1/a0)/M7 

A21 = -D,/Y, A22 = D2, T Z l  = D1(a1/a0)/yM7 

' 3 1  = B l ( a O / a l ) M ,  &2 = - ? / B 2 ( a O / a l ) M ,  n31 = ( l  -B1),  

= ('0lal) M 7  7fTTgl = --All. 

The shock relations (3.3) will be applied at  x = mr, where 

m = ( V  - U)/U, = M(uo/a1) - M,, 

the undeflected plane of the shock in accordance with the linearization. 

(3 .34  we eliminate $ by cross-differentiation and obtain at  x = rnr 
From shock relations (3.3b) and ( 3 . 3 ~ )  we eliminate $, and from (3.3b) and 

u = ( l /A ) (p -BG-CP) ,  (3.4a) 

and (3.4b) 

where 

A = B = hZ1 - Ah,,, C = A,, - Ah,, and D = n21/n.p, . 

On the body surface 
Owing to singularities at  r = 0, it is necessary to formulate the linearized 
boundary condition at the body surface carefully. With respect to the co-ordinates 
attached to the body, if r = f ( x )  represents the cross-sectional radius of a body 
moving with speed W ,  the tangency condition that the normal component of the 
velocity vanishes along the surface may be expressed as 

where the prime represents the differentiation with respect to the argument. 
Assuming q2 inversely proportional to r in the vicinity of the axis we obtain 
there rq, = Wf (x)f'(x). Hence in the assumed co-ordinate system (x, r ;  t )  behind 
the shock we can write, near the body surface, 

or in non-dimensional form 
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where m, = ( W + U)/a ,  = M’(ao/al) + $1,. Using the second momentum equa- 
tion ( 2 . 8 )  it follows that as r+O, 

r(ap/ar) = -a(rq)/ar-+ -mfF(x+m,r) ,  (3.6) 

where F(<) = P ( 5 )  +f(<)f”(t)* 
Again, on the body surface along the shock x = mr 

rq = m,f{(m + m,)r>f’{(m 3- m&}. 

Using the shock relation (3.4b), it follows that along the shock as r+O, 

r(ap/ar) ~Dm,(m+m,)F{(m+m,)r)+lim {A,,r(au/ar) +A,,r(ap/ar) 
r-0 

-DA,,r(aij/ar)}. (3.7) 

Hence the conditions at  the shock (3.4) should be supplemented by condition 
(3.7) to ensure that the flow remains tangential to the body surface at the foot 
of the shock. 

A t  injinity 
We prescribe that all perturbations vanish at infinity, i.e. 

as x --f - 00, r -+ co, p and its derivatives --f 0. (3.8) 

4. Disturbance field ahead of shock 
We assume that the traversing shock does not affect the flow field ahead of it. 

Hence time-independent solutions can be found for the region (2). For flow over 
an axisymmetric body with a supersonic free-stream speed W > a,, the pertur- 
bation velocity potential $(x, r )  is given by 

where pz = ( W/a,), - 1, with respect to the axes attached to the nose of the body. 
The perturbation velocities are 

where F(5)  is as defined in (3.6). 
For the pressure we use the quadratic approximation to the Bernoulli’s equa- 

tion, i.e. p2fR0 = - W (a#/ax) - The second term is negligible except 
in the vicinity of the surface of the body where the order of a$/ar is different from 
that of @/ax. We shall consistently neglect the contribution of (a$/ar) ,  top, and 
consider the approximationp, = - R, W(a$/ax). 
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With respect to the co-ordinate system (x, r ,  t ) ,  x is replaced by ( x f m , ~ ) .  
Hence at the shock, where z = mT, the perturbation quantities in the non- 
dimensional form may be expressed as 

I - 
P = k2f - w&), 

where k, = W / V  = M’/M and k, = (Ro/yPo) W 2  = MI2. 

5. The Lorentz transformation 

(x, r ,  r) by the Lorentz transformation 
We introduce new independent variables (x, r ,  7 )  related to the variables 

53 = (x - m7)/( 1 - m2)&, ? = (7 - W L X ) / (  1 - m2)*, (5.1) 

such that the plane X = 0 corresponds to the shock plane x = mr, and the wave 
equation (2.10) remains invariant, viz. 

The initial conditions (3.1) and boundary conditions (3.8) and (3.6) become 

7 6 0, p(X2r,F) = ap(x,r,;?)/aT = 0, (5.3) 

7 > 0, x < 0, as r -+ 0, r(apjar) + A,P{a(?; +Ao%)), (5 .5)  

for 

?; > 0, x < 0, as 2-t - co, r-tco, p and its derivatives - to ,  (5.4) 

where A ,  = -m;, = (m+m,)/(l -m2)* and A,, = (1 +mm,)/(m+m,). 

equations (2.8), give 
With the Lorentz transformation (2.7), combined with (2.9) and the first of 

(a/a7-ma/ax)p+(a/ax-ma/a7)u+(i -m2)4(a/a~+ l / r ) q  = 0, 

maulax: = a@? + (qax  - ma/a.r)p. and 

Eliminating au/& and differentiating with respect to 7 it follows that 

Prom the shock relations (3.4), substituting for u and aq/a? = (aq/ar)/( 1 - m2)* in 
(5.6) we obtain at  the shock X = 0 
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From (4.3) the perturbation quantities U, q, 11 at the shock in terms of new 
variables are 

P = k,( --qk,), 
where 6 = BIZ. Substituting for V, q and ji from (5.8) in (5.7) and simplifying, 
we obtain at  5 = 0 

O { (~-p)2-&2):  

(5.9) 
where K is a constant given by 

K = - (1 + 1/M2) (Bk, - Ck,) + (A2,k, - Az,k2)62 - (1 - m2)*Dh,,k,Z62. 

Equation (5.9) is thus a second-order differential condition at  the shock 5 = 0 in 
terms ofp .  

Also making use of (5.8) in (3.7) we deduce that 

at  3 = 0, as r+O, r(ap/ar)+B,F(Z?), (5.10) 

where B, is another constant given by 

B, = (1 -m2)~D(m,-A41kl)Z+(A21kl-A22k2). 

Hence the wave equation (5.2) is to be solved subject to the initial conditions 
(5 .3 )  and boundary conditions (5.4), (5 .5 ) ,  (5.9) and (5.10). 

6. Analytic solution 
The solution t o  the above formulation is sought by means of integral trans- 

forms. First we apply the Laplace transform with respect to ? and then the 
Hankel transform with respect to r (see Sneddon 1951) 

and W ( X ,  u, s )  = H(v(5, r ,  s ) }  = rv(x, r ,  s )  Jo(ar)dr. 
/Om 

Application of Laplace transform to the wave equation (5 .2 )  together with 
the initial conditions (5.3) gives 
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The boundary conditions (5.4), (5.5), (5.9) and (5.10) reduce to 

for 3 < 0, as X - t  -00, r+co, v and its derivatives + O ,  (6.4) 
z < 0, as y + O ,  r ( a v p )  = A,exp{sA,Z}G(s), (6.5) 

a2v 1 av a v  
-(ar2 r a,) ax - + - - + 2ms - + ( 1 + 1/M2) s2v at X = 0, r > 0, 

= Ks2G(s)K,(6rs), (6.6) 

where G(s) = L{P(%?)} and K0(6m) is the modified Bessel function of the second 
kind. 

Next, applying the Hankel transform to equation (6.3), together with the 
conditions (6.4) and (6.5), yields 

s = 0, as Y + O ,  r (av/ar)  = B,G(s), (6.7) 

a2w 

ax2 
h2w = A ,  exp {sh,Z) G(s), (6.8) 

and as Z+--co, w+O. (6.9) 

_ _  

The shock condition (6.6), together with (6.7), gives at  Z = 0 

(A2+gi )w+2ms-  aw = -B,G(s)+K-=G(s), S2 

ax a2+b s 
(6.10) 

where A2 = a2 + s2. 

conditions (6.9) and (6.10). The complete solution of (6.8) may be written as 
Hence the problem is reduced to the solution of (6.8) subject to the boundary 

w = El exp {Ax} + E, exp { - Ax} - A,  exp {sh,x}G(s). (6.11) 

In view of the condition (6.9), the coefficient of exp { - Ax)  must vanish and E, is 
determined by using condition (6.10). Hence we obtain 

A2 - his2 

A s  h 

exp {Ax) 

- 2 m A  ____- 
H ( h )  h + has Bo H(A) + '' H(h) 

h 

X -___ G(s)  - ~- A' exp{sh,x)G(s), (6.12) h A2 - hi s2 

where H ( h )  = h2 + Zmsh + (s2/M2) = ( A  + h,s) ( A  +h,s) with A,, A, the roots (real, 
distinct and positive) of the quadratic equation A% - 2rn& + ( 1 /M2)  = 0. Then 
(6.12) may be written in the form 
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The expression A: > 0 implies that the intersection point I of the Mach-wave 
attached to the body with the plane blast lies outside the sonic circle (figure 2). 
By further manipulation (6.13) may be expressed as 

Finally, we seek inversion of w(3, a, s) to obtain p(X, r ,  7) ,  i.e. 

p(X, r ,  7 )  = L-1 [H-l{w(X, a, s)}]. 

The inversion is achieved in a straightforward manner with the aid of standard 
tables of integral transforms. Thus 

at, = 11, F { W  _ _ _ ~ _ _ _ _  - R +hot)} 
R 

where R = { ( % - t ) 2 + r 2 } * .  Similarly, the inversion for the other expression in 
(6.14) can be achieved and we obtain 

0 F(Z(7 - R + hot)} 
R - at 

Since the initial conditions (5.3) imply that F(Z,r,F) = 0 for 7 < 0, the last 
expression can also be written as 

where 

and 

In case A: = (1 -g2) < 0, the shock intersection I lies inside the sonic circle 
(figure 4). The region IBDI of figure 2 now disappears. In  the above expressions 
A, and A, become imaginary. Hence for obtaining p(Z,  r ,  7 )  from (6.16) we need to 
consider the real parts of expressions involving A, and A,. 

The solution given by (6.16) satisfies the wave equation and all the initial and 
boundary conditions. By using the transformation (5.1), p can be expressed in 
terms of the original variables (x, r ,  7) .  

wo = [X+ A,? - {(T + A o X ) 2 -  (1  - A3r2}*]/(1 -hi) 

wi = [ x - A i T + { ( 7 - A i Z ) ~ -  (1 -A3?-2}4]/(1 -A;). 
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The expression (6.14) could also be written a,s 

exp{sh,x}G(s) - &I5 exp {sh,[)G(s) - - ~ ~ -  8) d‘. exp { - 
h 

(6.14) 

+ -~ 
h2- 

FIGURE 4. Flow pattern for t > 0, n-hen 1 is inside the sonic circle. 

Upon inversion (6.14) yields 

From this expression we observe that the integrals within brackets vanish for 
( 3 + r 2 )  2 T2, i.e. on the spherical wavelet BCDE of figure 2 .  The first integral 
vanishes for {T + A,? - (1 - h;)b} < 0, i.e. to the left of ,412 which is tangent to 
the wavelet BCDE a t  C and passing through A ,  the vertex of the axisymmetric 
body. Finally, the last integral vanishes for {?+h,Z- (1  - h;)*r) < 0 ,  i.e. to the 
left of I D  tangent to BCDE a t  D and passing through I ,  the shock intersection. 
Hence the flow pattern which was discussed in 0 1 can be seen to emerge from the 
solution. 

By using the differential equations (2.8) and (2.9), the shock conditions (3.3) 
and the expressions (4.3), we can obtain the velocity components, the density in 
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the disturbance field behind the shock and the form of the incident shock front. 
Hence the density variation may be expressed as 

Pf x ,  r ,  7 )  = P(X, r,  7) + V X ,  4 ,  (6.17) 
where 

F(x, r )  = (E  - l ) p ( x ,  r,  r = x/m) - (Fk,  - Gk,) 

with 
E = n,l/7721, F = A,,- G = A12- EA,,, C = /3m/(m+m,). 

The form of the incident shock is given by 

x = mr + $(r,  r) ,  (6.18) 

7. Aerofoil of arbitrary shape 
In  the case of two-dimensional aerofoils, the flow pattern developed after the 

aerofoil penetrates the shock is essentially the same as discussed for axisymmetric 
bodies, except that now it has to be visualized in two dimensions. Since the flow 
at all times is supersonic with respect to the aerofoil, the flow patterns on the 
two sides are independent of each other. Hence it is sufficient to consider the 
solution for, say, y > 0. If ( x ,  y ,  t )  be the co-ordinate system fixed in the undis- 
turbed flow behind the plane shock, the equations of motion for small pertur- 
bations in the non-dimensional form may be written as 

where v is the perturbation velocity in the y-direction. These equations can be 
combined to yield the wave equation for p ,  viz. 

a2plax2 + a2pIay2 - a2plar2 = 0. (7.4) 

For T G 0, p = aplar = 0. (7.5) 

The initial and boundary conditions are as follows: 

On the disturbed shock front the set of equations (3.3) hold with q replaced by 
v and r by y. From these it follows that 

u = ( l / A ) ( p - B Z - C j q  (7.6a) 

and avlar = ( ip)  (splay - A,, aupy - A,, splay) + A,, a q a r .  (7.6b) 

If y = f (x) represents the upper surface of an aerofoil, behind the shock on the 
aerofoil 

v1 = ( W +  U )  f ’ ( x+  ( W +  up}, 
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or in non-dimensional form 
71 = v,/a, = m1f'(x+m17). 

Using the second momentum equation (7 .2) ,  it follows that 

at  y = 0, ap/ay = -m:f"(x+m,r). 

Also along the shock (where x = mr), on the aerofoil 

71 = m,f'{(m + m,) 71, 

which together with shock relation (7 .6b)  yields 

(7.7) 

at x = mr, y = 0, ap/ay = D ~ , ( m + ~ , ) f " { ( ~ + ~ , ) ~ } + { A , , a u / a y  

+ ajqay - DA,,&/~T). (7 .8)  
At infinity we prescribe 

as x + - 00, y + + co, p ( x ,  y ,  r )  and its derivatives -+ 0. (7 .9)  

The disturbance field ahead of the shock can be expressed as 

(7 .10)  I u = u,/v = - (k l /P)f '{(X+ m17) -PY),  
- 
v = v2/V = -/%, ji = p2/yPo = - (k%/k,)u,  

where the constants k, and k, are the same as before. 
We introduce new variables ( z ,  y ,  5 )  related to the variables (x, y ,  7) by the 

Lorentz transformation (5.1). The plane Z = 0 corresponds to the undisturbed 
plane of the shock x = mr, and the wave equation remains unchanged, viz. 

a2piaz2i- a2play2- a2p/a~2 = 0. 

for ? Q 0, p = apja? = 0. 
The initial conditions are 

(7.11) 

(7 .12)  

The boundary conditions (7 .9)  and (7 .7)  become, for 7 > 0, X < 0,  y > 0, 

as X -+ - 03, y + + co, p and its derivatives + 0 ,  (7.13) 

and at  y = 0, apjay = AOf"{CL(?+AoZ)}. (7 .14)  

Making use of the continuity equation (7 .1)  together with (7 .3) ,  the first of the 
momentum equations (7.2), the conditions at the shock (7.6) and the upstream 
perturbations (7 .10) ,  we deduce a differential condition in terms of p ,  

(7.15) 
Also from (7.8) we obtain 

a t  Z = 0 ,  y = 0, apjay = B,f"(CL?). (7 .16)  

The contents A,, a, A,, 6, K and B, are the same as before. Now we must solve 
(7.11) subject to the initial and boundary conditions (7.12)-(7.16). 
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To this formulation first we apply the Laplace transform with respect to 'i as 
defined by (6.1) and then the Fourier cosine transform with respect to y as 
defined below 

(7.17) 1 v(3, Y, 8) = L{P@, y7 

w(E, a, s) = P,(v(X, y, 8 ) )  = V ( Z ,  y, s) cosaydy. 1: 
The equation (7.11) and the conditions (7.12) and (7.13) give 

a2w/ax2-h2w = A,exp{sh,E}G(s), (7.18) 
and as X-t-m, w+O. (7.19) 

The condition a t  the shock (7.15), together with (7.16), yields at Z = 0 

(h2+s2/M2)w+2msaw/aE = -B,G(s) +KG(s)s2/(a2+62s2), (7.20) 

where h2 = a2+s2  andG(s) = L{f"(G'i)>. Theformulation(7.18)-(7.20)isthesame 
as obtained earlier (6.8)-(6.10), the solution of which is given by (6.14). The 
inversion of (6.14) in this case yields 

p(X, y, 'i) = L-l[F;l{w(E, a, s)}] 

8.1. Slender conical projectile 8. Applications 

Specializing the results of $ 6  to a slender conical projectile of semi-vertex angle 
E ,  we obtain from (6.16) 

where 

Transforming to the original variables (x, r ,  7 )  and expressing the results in terms 
of conical variables defined by a = x/r  and 7 = r / r ,  we obtain 

p ( a , r )  = &e2 (Qsinh-l(---) a-rn - 5 Aisinh-l ( a-B%-  Qi )), (8.2) 
(1-m2)+7 i = o  (1-m2)&7 

where 

and (1- 

with yo = (ho-m)/(l-horn) and yi = (hi+m)/(l +him), 

for i = 1,2 ... 5. 
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The expression for density variation (6.17) becomes 

p = p ( a , ? l ) + ( E -  l )p(m,y‘)-  ( F ~ , - G ~ , ) E ~ C O S ~ - ~ ( C T / C ~ ) ,  (8.3) 
5 

i = O  
where 

We see that p(m, 7’) vanishes for a( 1 - m2)& ,< my, i.e. to the left of line OB 
(figure 2 )  and the third term in (8.3) vanishes for CT < Cy, i.e. to the left of line 
OI. These lines O B  and OI are thus contact surfaces, which can be clearly seen 
in the shadowgraph shown by Blankenship & Merritt (1966). The rotationality 
of the flow is thereby restricted to the domain IOF. 

At the surface of the conical projectile y = c(ml + a),  0, and Qi approximate 
to 

and the expression (8.2) simplifies to 

p(m, 7’) = *c2 A d  sinh-l {QJm, y’)/( 1 - m2)!y’}, 7’ = m via. 

%I = - ( 1 - a . ) ( l + y o m ) / ( l + y , f ,  Qi = ( 1 + 4 1 1 - y i m ) / ( l + r i ) ,  

p = +2(  1 1-3% 1 

8.2. Two-dimensional wedge 

Specializing the result (7.21) to a two-dimensional wedge of semi-angle E ,  we have 

5 + h07 

9 (8.5) 
i=l ( 1  -hi)$ 

where A, and the hi’s are < 1. Changing to the original variables 
expressing the result in terms of conical variables CT = x/7,y = y/ r  

- 
where A, = A,(1 + y o m ) / ( l  -$)+, Xi = A,(1-  y im) / ( l  -y:)+. 

The expressions for the pressure on the face of the wedge (y = 0 )  and along the 
shock (CT = M )  can be shown by laborious calculation to be the same as obtained 
by Smyrl (1963). 

9. Numerical results and discussion 
Pressure distributions on the surface of the cone have been calculated for the 

Mach-reflexion region E to F .  We consider a cone of semi-vertex angle E = 0.025 
with M’ = 1.5 and 2.5 for various values of M and with M = 2.0 and 4.0 for 
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various values of M',  thus demonstrating the effect of shock strength and the 
cone speed respectively. The results are illustrated in figures 5 and 6. The scale 
is adjusted to make the distance EF the same in all cases. In  figure 7, a comparison 
is drawn between our results and those obtained by Blankenship (1965) by 

t 
N 
(r: M=10 1 

\ 
\ 

I I I I 

0 0.2 0.4 0.6 0.8 1.0 
E F 

FIGURE 5. Pressure distribution on the cone surface for B = 0.025 for various values of 
M .  -, M' = 2.5; ---, M' = 1.5. 

numerical methods for 8 = 0.025, M' = 2.5 and M = 11.25 and 6.25. Two 
features emerge from it. First, the starting values of the pressure at  E are not 
the same in the two cases, Blankenship's values being higher. This may be due 
to a numerical mistake in the latter's results. Since Blankenship starts from the 
well-known conical solution in the region AEC, while the author obtains the 
same conical solution in this region from his analysis, the values of pressure at  
E should have been the same in the two cases. Secondly, the behaviour of the 
curves given by the two procedures is different. The discrepancy in the be- 
haviour can be attributed to the fact that Blankenship considers the value of 
r(ap/ar) on the cone surface to be constant from E to F (figure 2), which in fact 

15 Fluid Mech. 34 
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is the case but he does not consider any jump in r(ap/ar) at F. While in our for- 
mulation when the shock is approached along the body and when the body is 
approached along the shock, the two limits of r(ap/ar) are different at  P, thereby 
providing a jump in r(ap/ar), though the assumption that the flow is tangential 

52 

44 

28 

I I I 1 1 
0 0.2 0.4 0.6 0.8 1-0 

E F 

FIGURE 6. Pressure distribution on the cone surface for e = 0.025 for various values of M'. 
-, M = 2.0; ---, M = 4.0. 

to the body even a t  the root of the shock still holds. Incidentally, if we consider 
the value of r(ap/ar) constant along the cone surface from E to P without any 
jump (i.e. B, is taken as A,, in the analysis), the behaviour of the results thus 
obtained for the pressure on the cone surface is closer to  that obtained by 
Blankenship. These results are also plotted alongside the other results in figure 7.  

The complete pressure field in the Mach-reflexion region is plotted in figure 8 
for E = 0.025, M' = 2.5 and M = 11.25. This allows fuller comparison with 
Blankenship (1965, figure 6). The isobars in the two cases agree fairly well, except 
in the vicinity of the cone surface as can be expected from the preceding 
discussion. 
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E 

FIGURE 7. Comparison of results-pressure variation on the cone surface for E = 0.025, 
M' = 2-5, M = 11.25 and 6.25; --, present theory; -.- , present theory with 3, 
taken as A,; - - - , Blankenship (1965). 

- 1.0 - 0.8 - 0.6 -0.4 -0.2 0 0.2 

FIGURE 8. Isobars (p / s2 )  for E = 0.025, M' = 2.5, M = 11-25. 
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